REP (Reproducible Experiment Platform)
0.6.7
  • Estimators (classification and regression)
  • Meta Machine Learning
  • Report for models
  • Metrics
  • Plotting
  • Parallel computing
  • Data
  • Utilities
  • REProducibility
  • Howto notebooks
REP (Reproducible Experiment Platform)
  • Docs »
  • Overview: module code

All modules for which code is available

  • _abcoll
  • collections
  • rep.data.storage
  • rep.estimators.interface
  • rep.estimators.matrixnet
  • rep.estimators.neurolab
  • rep.estimators.pybrain
  • rep.estimators.sklearn
  • rep.estimators.theanets
  • rep.estimators.tmva
  • rep.estimators.xgboost
  • rep.metaml.cache
  • rep.metaml.factory
  • rep.metaml.folding
  • rep.metaml.gridsearch
  • rep.metaml.stacking
  • rep.plotting
  • rep.report._base
  • rep.report.classification
  • rep.report.metrics
  • rep.report.regression
  • rep.utils
  • sklearn.base

© Copyright 2014-2015, Yandex.

Built with Sphinx using a theme provided by Read the Docs.