Data¶
This module contains wrappers for pandas.DataFrame data for estimators.
Storage¶
This is a wrapper for pandas.DataFrame, which allows you to define dataset (data, labels/values, sample weights) for an estimator in a simple way.
-
class
rep.data.storage.
LabeledDataStorage
(data, target=None, sample_weight=None, random_state=None, shuffle=False)[source]¶ Bases:
object
This class implements an interface of data for estimators training. It contains data, labels/values and weights - all information to train a model.
Parameters: - data (pandas.DataFrame) – features, array-like of shape [n_samples, n_features]
- target (None or numbers.Number or array-like) – labels/values for classification/regression (set None for the predictive methods)
- sample_weight (None or numbers.Number or array-like) – weight (set None for predictive methods)
- random_state (None or int or RandomState) – state for a pseudo random generator
- shuffle (bool) – shuffle data or not
-
col
(index)[source]¶ Return column from the data.
Parameters: index (None or str or list(str)) – names Return type: pandas.Series or pandas.DataFrame
-
eval_column
(expression)[source]¶ Evaluate some expression to obtain necessary columns for the data
Return type: numpy.array or str or